로그아웃 하시겠습니까?

  • 주제별 국가전략
  • 전체

Copyright and artificial intelligence : a report of the register of copyrights. Part 3, Generative AI Training

(저작권과 인공지능 제3부 : 생성형 AI 학습)
□ 미국 저작권청, 생성형 AI 학습 단계 저작권 문제 종합 검토 보고서를 발표함
   ㅇ 2025년 5월 「Copyright and Artificial Intelligence-Part 3:Generative AI Training」보고서를 통해 발표함
   ㅇ 대규모 데이터 수집·정제, 모델 학습, 파라미터 고정, 출력·배포로 이어지는 AI 기술 흐름을 설명함
   ㅇ 학습 데이터에 포함된 저작물의 표현을 거의 그대로 재현하는 '메모리제이션' 현상이 저작권 침해 위험을 높임
   ㅇ 데이터 크롤링 단계에서의 대규모 복제, 토큰화·캐시 과정에서의 수많은 임시 사본 생성, 학습된 파라미터 공간에 원저작물 표현이 압축된 형태로 '각인'되는 것이 구조적 위험 발생의 원인이라고 지적함

□ AI 학습 및 출력의 저작권 침해 가능성과 공정이용 원칙 적용을 평가함
   ㅇ 데이터 수집·정제, 학습용 복제, 파라미터 저장, 출력 결과물 재배포 등 모든 단계가 미국 저작권법상 복제권과 2차 저작물 작성권을 원칙적으로 침해할 수 있다고 평가함
   ㅇ 다만 책임 여부는 공정이용(fair use) 판단에 달려있다고 명시함
   ㅇ 비표현적이고 변형성이 높은 이용은 허용될 가능성이 크다고 보았으며, 불법적 수단으로 구축된 대규모 상업 모델이 창작물 시장과 직접 경쟁하는 경우 공정이용 범위를 넘어선다고 판단함
   ㅇ 특히 공정이용 4요소 중 '시장 대체효과'에서 AI가 창작물과 경쟁 관계에 있는 결과물을 대량 생산하면 시장 침해가 현실화된다고 판단함

□ AI 저작권 관련 라이선스 및 보상 체계에 대한 검토와 권고를 제시함
   ㅇ 개별·집단 자발적 라이선스 모델: 일부 분야에서 실현 가능성이 입증되었으나, 모든 저작물 범주에 일괄 적용하기에는 비용 및 표준화 문제가 크다고 설명함
   ㅇ 강제 라이선스 제도: 요율 고정과 산업 관행 고착 등 부작용이 예상되어 현시점에서는 권장하지 않는다는 결론을 내림
   ㅇ 확장집단라이선스(ECL): 특정 장르에서 시장 실패가 입증될 때에만 선택적으로 도입할 수 있는 대안으로 제시되며, 이 경우 반독점 문제 완화를 위한 가이드라인이 필요하다고 권고함
   ㅇ 옵트아웃(opt-out) 제도: 미국 저작권법이 기본적으로 '옵트인(opt-in)' 체계를 취하고 있음을 감안할 때 창작자에게 과도한 부담을 전가할 우려가 있다고 지적함
   ㅇ 현행 저작권법과 공정이용 원칙만으로도 상당 부분 대응 가능하므로, 별도의 입법보다는 먼저 시장 주도의 자발적·집단 라이선스 모델이 성숙하도록 지원할 것을 권고함
   ㅇ 다만 특정 유형의 저작물에서 구조적 시장 실패가 확인될 경우에 한해 ECL 등 '표적형 개입'으로 보완해야 한다는 입장을 밝힘

□ 향후 사법적 해석과 정책 접근 방향을 전망함
   ㅇ 관련 소송이 2026~2027년경 항소심 판결에 도달할 것으로 전망하고, 사법적 해석이 확립될 때까지는 유연성과 실험을 허용하는 '후행적·증거 기반' 정책 접근을 제안함
   ㅇ 저작권청의 위 보고서는 향후 미국 법원의 판결에 상당한 영향을 줄 것으로 보인다는 점에서 중요한 의미를 가짐



(출처: 전자신문)

목차

Title page 1

Contents 3

I. INTRODUCTION 5

II. TECHNICAL BACKGROUND 8

A. Machine Learning 8

B. Generative Language Models 10

C. Training Data 13

1. Data Characteristics 13

2. Acquisition and Curation 17

D. Training 21

1. Training Phases 21

2. Memorization 23

E. Deployment 25

III. PRIMA FACIE INFRINGEMENT 30

A. Data Collection and Curation 30

B. Training 31

C. RAG 34

D. Outputs 35

IV. FAIR USE 36

A. Factor One 39

1. Identifying the Use 40

2. Transformativeness 41

3. Commerciality 52

4. Unlawful Access 55

B. Factor Two 57

C. Factor Three 58

1. The Amount Used 59

2. Reasonableness in Light of Purpose 59

3. The Amount Made Available to the Public 61

D. Factor Four 65

1. Lost Sales 66

2. Market Dilution 68

3. Lost Licensing Opportunities 70

4. Public Benefits 75

E. Weighing the Factors 78

F. Competition Among Developers 78

G. International Approaches 80

V. LICENSING FOR AI TRAINING 89

A. Voluntary Licensing 89

1. Feasibility of Voluntary Licensing 90

2. Ability to Provide Meaningful Compensation 96

3. Possible Legal Impediments to Collective Licensing 98

B. Statutory Approaches 99

1. Compulsory Licensing 99

2. Extended Collective Licensing 103

3. Opting Out 105

C. Analysis and Recommendations 107

VI. CONCLUSION 111

해시태그

#저작권 # 인공지능 # 공정이용 # 저작권법

관련자료

AI 100자 요약·번역서비스

인공지능이 자동으로 요약·번역한 내용입니다.

Copyright and artificial intelligence : a report of the register of copyrights. Part 3, Generative AI Training

(저작권과 인공지능 제3부 : 생성형 AI 학습)