로그아웃 하시겠습니까?

  • 주제별 국가전략
  • 전체

Reorienting budgetary support to agriculture for climate change mitigation : a modelling analysis
(기후위기 완화를 위한 농업 예산 지원 방향 전환 : 모델링 분석)

목차

Title page

Contents

Acknowledgements 2

Executive Summary 6

1. Introduction 8

2. Literature background 9

3. Methods 11

3.1. Modelling framework 11

3.2. Scenario design 17

4. Results 22

4.1. Climate benefits of the reform options 22

4.2. Scenario performance on the food systems' triple challenge 25

4.3. Sectoral and regional impacts 27

4.4. Overall outcome and policy mix 30

5. Discussion 34

References 37

Annex A. List of model sectors and regions 43

Annex B. METRO-PEM technical description 45

Annex C. GHG emissions accounts in METRO-PEM 57

Annex D. Calibration of marginal abatement costs in METRO-PEM 60

Annex E. SOC accounting module for METRO-PEM 63

Annex F. Land use change and living biomass emissions in METRO-PEM 68

Annex G. Representation of input-based PSE payments in METRO-PEM 73

Annex H. Supplementary tables and figures 77

Annex I. Results decomposition and sensitivity analysis 84

Table 3.1. PSE transfers allocation in METRO-PEM based on GTAP data 14

Table 3.2. PSE payments data allocation by factor in METRO-PEM, by category 16

Table 3.3. Scenario set-up for reform options 17

Table 4.1. Emissions abatement cost-efficiency of public budget expenditure, by scenario 32

Figure 3.1. Data environment of the METRO-PEM modelling framework 11

Figure 3.2. PSE payments data allocation in METRO-PEM, by sector and factor 16

Figure 3.3. Total transfers across output, input and factors payments in the decoupling scenarios 19

Figure 3.4. Relative transfers by payment forms and regions in the decoupling scenarios 20

Figure 4.1. Global GHG emission changes for all scenarios 23

Figure 4.2. Absolute change in GHG emissions, by scenario with land use change sources, in the absence of land use regulations globally 25

Figure 4.3. Relative change in key global sustainability indicators across all scenarios 26

Figure 4.4. Relative change in world production volume, by sector and scenario 28

Figure 4.5. Relative change in GHG emissions, by region, scenario, and source 29

Figure 4.6. Relative change in land use, by region, scenario, and land type 30

Figure 4.7. Absolute change in GHG emissions by source for policy mix scenarios 33

Figure 4.8. Relative change in key global food systems indicators for policy mix scenarios, compared to other selected scenarios 34

Boxes

Box 1. Exploring how emissions from land use change could affect the results 24

Annex Tables

Table A A.1. METRO-PEM sectoral aggregation 43

Table A A.2. METRO-PEM regional aggregation 44

Table A B.1. Overview of factor market closure assumptions in METRO-PEM 52

Table A B.2. PEM model production function elasticities 53

Table A B.3. Default PEM elasticities currently used for METRO-PEM land allocation module 54

Table A B.4. Demand income elasticities used for METRO-PEM demand system calibration 55

Table A B.5. Uncompensated own-price elasticities for final demand in METRO-PEM 56

Table A B.6. Armington import substitution elasticities 56

Table A C.1. Agricultural GHG emissions coverage in METRO-PEM by category 58

Table A E.1. SOC reference level for cropland assumed for METRO-PEM region 64

Table A E.2. Land use coefficient FLU for SOC calculation 64

Table A E.3. Management coefficient FMG for SOC calculation 65

Table A E.4. Share of tillage practices assumed for annual crops in regions in METRO-PEM 66

Table A E.5. SOC carbon stock represented in METRO-PEM, by sector and region 67

Table A F.1. Deforestation emission parameters for METRO-PEM regions 69

Table A F.2. Foregone carbon sequestration emission factors 70

Table A G.1. Category B payment in 2017 by subcategory and target 74

Table A G.2. Allocation of PSE payment types to METRO-PEM production factors 76

Table A H.1. Change in GHG emissions by scenario, region and source 77

Table A H.2. Relative change in key global sustainability indicators by scenario and region 80

Table A I.1. Relative change in global agricultural GHG emissions, by scenario and sensitivity assumption 87

Table A I.2. Relative change in global calorie availability, by scenario and sensitivity assumption 88

Table A I.3. Relative change in real value added, by scenario and sensitivity assumption 89

Annex Figures

Figure A B.1. Standard production function in METRO-PEM (non-agricultural sectors) 48

Figure A B.2. Crop sectors production function in METRO-PEM 49

Figure A B.3. Livestock sectors production function in METRO-PEM 50

Figure A B.4. Default nesting structure for the METRO-PEM land allocation with full sectoral disaggregation 51

Figure A C.1. Overview of agriculture GHG emissions in METRO-PEM by sector and region 59

Figure A D.1. Change in GHG emissions at calibration in METRO-PEM and EPA (2019) 62

Figure A G.1. Category B payments under the METRO-PEM typology, in 2017 75

Figure A H.1. Total transfers by payment forms and regions in the decoupling scenarios 83

Figure A H.2. Total transfers by payment forms and regions in the decoupling scenarios 83

Figure A I.1. Response of agricultural production and GHG emissions to change in level of support, by type of instrument 85

제목 페이지

내용물

약어 및 두문자어 5

요약 7

소개: 제조업과 미국의 미래 8

고급 제조를 위한 비전, 목표, 목표 및 권장 사항 9

목표, 목표 및 권장 사항 10

목표 1. 첨단 제조 기술 개발 및 구현 12

목표 1.1. 탈탄소화를 지원하기 위한 깨끗하고 지속 가능한 제조 활성화 12

목표 1.2. 마이크로일렉트로닉스 및 반도체용 제조 가속화 13

목표 1.3. 바이오경제를 지원하는 첨단 제조 구현 14

목표 1.4. 혁신소재 및 공정기술 개발 15

목표 1.5. 스마트 제조의 미래를 이끌다 16

목표 2. 첨단 제조 인력 육성 17

목표 2.1. 첨단 제조 인재 풀 확대 및 다양화 18

목표 2.2. 고급 제조 교육 및 훈련 개발, 확장 및 촉진 19

목표 2.3. 고용주와 교육 기관 간의 연결 강화 20

목표 3. 제조 공급망에 탄력성 구축 20

목표 3.1. 공급망 상호 연결 강화 21

목표 3.2. 제조 공급망 취약성을 줄이기 위한 노력 확대 21

목표 3.3. 첨단 제조 생태계 강화 및 활성화 22

추가 기관 간 기여자 24

부록 A. 에이전시 참여 및 지표 25

부록 B. 2018 전략 계획의 목표 달성 과정 27

부록 C. 자세한 권장 사항 33

해시태그

#온실가스감축 # 농업정책 # 기후위기대응

관련자료